

LIS-3353

Programming

Everyone needs to learn to code!!

?

Everyone needs to learn to code!!

Everyone needs to learn

about coding.

“Lots of very simple instructions
can add up to complex

computations.”

“Turing Completeness / Turing Machine”

(an infinite tape w/ simple instructions)

“Lambda Calculus”

(this is literally all you have to know)

Understanding Power

10 PRINT “John is AWESOME”;

20 GOTO 10

WARNING:

Discussions about coding are very passionate
and controversial..

Everyone thinks that their way is the best, and
that anything not their way sucks.

(someone might be right...)

“Popularity” can be misleading..
Languages are like fashion.. maybe the new hot thing will stick

around, maybe not...(and vice versa)

Know about BOTH..

What you hear about

v.

What people actually use

A bit on “coding”

What is taught as coding is usually:
“IN THE BEGINNING”

ie:

A bit on “coding”

print “Hello world”;

and/or

for i = 1; i < 10; i = i + 1{

print “ the count is $i”

}

(as if you were starting from scratch)

But perhaps we should be doing;
“Unix/Linux way scripting”

- how to find and download little linux
programs

- how they all work on the command line

- how they all talk in/with text

- how to string them together to do useful
things

Human Readability
(“Matrix” vs. “English”)

Old school - Human readability is not important

- Short abstractions are concise and thus quicker

- Forced whitespace is limiting

- There should be MANY ways to do a thing.

Human Readability
(“Matrix” vs. “English”)

New school – Hey, looks like human readability is at least
a little important:

- Multiple people working on projects

- Older code needs to be understandable

- There is value in forcing people to do things
only one way

“Always code as if the guy who ends up maintaining
your code will be a violent psychopath who
knows where you live.”

“Closeness” to machine

Compiled (older method) – Before running, you have
to “convert” it. Usually Makes for faster/more
efficent code.

Interpreted - “Conversion” happens on the fly.

Scripted – No “conversion” necessary. Usually only
good for shorter/smaller/ scripted things.

Compiled Languages
● Older
● “Normal”
● “Close to machine”

“COMPILED” - Source Code

Compiled Code (binaries)

Why is “scripting” NOT considered
“real programming?”

● Quick and dirty
● Can be slow (especially as compared to

compiled)
● Lacks “libraries” or “frameworks”
● Few tools/structures designed for reuse or

collaboration

“Real” Programming Languages
(C, Python, Ruby, Java etc.)

Bash/Shell scripting

For example...

sudo rm -rf /

● seriously, don't do this.

INTERPRETED LANGUAGES:
● Basically, they split the difference; interpreted

on the fly. MOST WEB LANGUAGES are this:

PHP and Javascript!

Important “real life” Categories.
(these are fuzzy)

● Procedural (default) - Do things step by step

● Functional – Turn it into straight up math. No variables, no
“procedures”

● Object Oriented – Everything uses an “object” metaphor.
(“Black Box Approach”)

More on “age...”

Older usually equals "more ways than one"

Older usually equals less "human readable"

Older usually means more versatile

Older usually means more support/libraries

Languages and the Web

"Normal" Languages - web glue required
Lisp, C, Java*, Perl, Ruby*, (Bash), Python

"Web required" Languages
PHP, Javascript, Flash

*still VERY web oriented

Lisp (and other functionals)
(Haskell, Clojure)

- MATHY

- VERY, perhaps TOO “versatile”

- Stallman and Emacs

- Functional is seeing a resurgence, because
of its mathematical “purity.” There are NO
VARIABLES, WHOA.

C (C++, C#)

● Practical grandaddy of (modern) everything
● Still a good choice for speed and control, at

the cost of ease
● "Why C sucks" -- TOO MUCH control, too

much “hardcore stuff” to worry about

(e.g. “malloc”)

Python

● Forced whitespace
● Usually "one way to do a thing"
● In the "middle" on just about all parameters.
● "Why Python Sucks" – oddly, not super

popular – perhaps not SPECIALIZED enough

Ruby
Designed for elegance, ease of use, but still powerful

● Highly OO

● Very easy to get started

● Very easy to read, yet still concise.

● Poignant's guide to ruby

● Arugably not quite as fast as slightly older languages

● "Why Ruby Sucks" – Turns out to not be fast enough, probably getting
eaten by Javascript?

Java

● First attempt at dethroning C, looks a lot like it
● Originally company driven, as a result got

popular/useful quickly
● interpreted, not compiled (Virtual Machine required)
● "Why Java Sucks" - slow, verbose, too many

options/fragmented

SERVER-SIDE

Code resides on server

Code is executed by server

Dynamic content is produced

(Ruby on Rails, Django, PHP*, Wt)
Note why PHP is a little weird. Instead of independent code, PHP
code is EMBEDDED IN HTML, but run by the server -- where you'd
usually expect it to be the other way around, i.e., have your code
PRODUCE html. This also might be why it's so popular.

PHP
● Designed to handle the web and HTML
● Features were added as needed, not from

ground up
● "Why PHP Sucks" Purists HATE IT; probably

the most duct-tapiest language of all

(still, facebook and wordpress)
(ASP is Microsoft's slightly different “PHP”)

CLIENT SIDE

CLIENT SIDE APPROACHES
Java/FlashJava/Flash

Download their little programs, and let them run in your browser

(yes, this can be as dangerous as it sounds)

Javascript

CODE is EMBEDDED in the html and RUN IN/BY YOUR BROWSER.

(yes, this is even more dangerous than the above. Also very useful. Get NoScript.) -

(greasemonkey is cool, though)

Silverlight- M$'s flash

HTML5 - will hopefully save us all. Reeimplementing all the good stuff in flash, openly.

HTML/CSS
- Not really languages. (Can't really do anything
besides dress up and move around text and pictures and
other things)

- Traditionally, for dressing up text because
fonts and colors (and HYPERLINKS WHOA)
used to be a pretty big deal.
- Today, not even a great choice if you need a
website, BUT you should know it because it's
now the FRAMEWORK for the web.

Flash
● Designed for "multimedia" - animations,

video etc.
● Can be hacked into a general purpose

language (but didnt start as one)
● Very "closed"
● "Why Flash sucks" -- ah, where to begin

Many more languages out there

Scheme, Scala, Haskell, Lua

LOLCODE, Shakespeare

Brainf**k, Whitespace

THE SIMPLE WEB

● XML - text, but with bracketed up metadata
Markdown, Zim for other examples of this concept in action

(note, JSON is similar to XML and can do all the same things, but is designed for Javascripty
stuff)

● HTML – (very forgiving) “XML” for the web
(tags for bold/headlines, etc)

● CSS - Hey, if you have a website, you'll probably want to have everything the same
font/color, why not specify that ONCE and be done with it.

CGI-BIN

Common Gateway Interface.
● That is, just let the website "reach in" to your

computer and run stuff.
● Thus, any language can be used here. Perl is

common
● Old school, not common anymore

Newer, popular “glues”

Other popular "glues" - from language to
web

● Django for Python
● Catalyst for Perl
● Ruby on Rails
● (Bash on Balls?)

Javascript

● Though looks like c, VERY DIFFERENT FROM
JAVA. Confusing, huh?

● CLIENT SIDE (mostly).

● JAVASCRIPT IS EATING THE WEB RIGHT
NOW. LOOKING VERY DOMINANT.

But what about personally?

First Principles:

The useful information/communication is
TEXT.

Text tools:

Built in:

Notepad/Leafpad.

Word? (just say no?)

Text tools: Programming

Classic:
Vim / Emacs / Nano

Newer:
Comodo / jedit / gedit /Notepad++

Even newer:

Sublime/Atom

Text tools: Taking
notes/notebooks:

Zim?

Anything with outlining?

Emacs Org-Mode.

Text tools: Communication

Email (very open)

v.

SMS (very closed)

v.

Everything else? (Slack / Facebook / Signal
/etc)

Text tools: News

Facebook/Social Media (push)

vs.

RSS/ Simple list of links (pull)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

