

LIS-3353

On Languages

(these slides may change)

The few things 99% of languages have in
common:

- Written in plaintext (there are exceptions)

- Punishingly difficult and picky syntax. One character
wrong and the whole thing explodes.

- this is important to remember:

Written BY humans FOR humans. Most everything you
see isn’t some weird computer artifact: it’s a choice.

Things people debate about over languages:

- Human readability?

- Compiled/interpreted/ or scripted?

- “Paradigm?” Procedural/Functional/Object-Oriented?

- What was it originally designed to do?

- How does it get changed?

- What does it do now?

● Many of these boil down to: SIMPLE vs EASY

SIMPLE and EASY are OPPOSITES

(that’s weird)

SIMPLE: (Think “command line”)

● Few assumptions

● You can see “everything”

● Usually “text-only”

● Rigid Framework

● “Mathematical”

● Few abstractions – simple data types.

● MORE verbose, MORE language to get things done.

EASY: (Think “iPhone” or “Siri”)

● Many assumptions

● A lot is hidden to simplify the view

● Not always text-only

● Multiple Pre-Loaded Frameworks

● “Visual”

● Many abstractions – simple data types.

● Less language to get something up and running.

Human Readability
(“Matrix” vs. “English”)

Old school - Human readability is not important

- Short abstractions are concise and thus quicker

- Forced whitespace is limiting

- There should be MANY ways to do a thing.

Human Readability
(“Matrix” vs. “English”)

New school – Hey, looks like human readability is at least
a little important:

- Multiple people working on projects

- Older code needs to be understandable

- There is value in forcing people to do things
only one way

“Always code as if the guy who ends up maintaining
your code will be a violent psychopath who
knows where you live.”

“Closeness” to machine

Compiled– Before running, you have to “convert” it.
Usually Makes for faster/more efficient code.

Interpreted - “Conversion” happens on the fly.

Scripted – No “conversion” necessary. Usually only
good for shorter/smaller/ scripted things.

Compiled Languages
● Older
● “Normal”
● “Close to machine”

“COMPILED” - Source Code

Compiled Code (binaries)

INTERPRETED LANGUAGES:
● Basically, they split the difference; interpreted

on the fly. MOST WEB LANGUAGES are this:

PHP and Javascript!

Important “real life” Categories.
(these are fuzzy)

● Procedural (default) - Do things step by step

● Functional – Turn it into straight up math. No variables, no
“procedures”

● Object Oriented – Everything uses an “object” metaphor.
(“Black Box Approach”)

Types of Languages
● Markup Languages (aren’t really languages)
● “Normal” Text oriented languages
● “Web” oriented languages
● Specialized languages

HTML/CSS
- Not really languages. (Can't really do anything
besides dress up and move around text and pictures and
other things)

- Traditionally, for dressing up text because
fonts and colors (and HYPERLINKS WHOA)
used to be a pretty big deal.
- Today, not even a great choice if you need a
website, BUT you should know it because it's
now the FRAMEWORK for the web.

Other “Markups”
Markdown

Org-Mode

Zim (perhaps best program ever written)

LaTeX

“Normal” languages following

Lisp (and other functionals)
(Haskell, Clojure)

- MATHY

- VERY, perhaps TOO “versatile”

- Stallman and Emacs

- Functional is seeing a resurgence, because
of its mathematical “purity.” There are NO
VARIABLES, WHOA.

C (C++, C#)

● Practical grandaddy of (modern) everything
● Still a good choice for speed and control, at

the cost of ease
● "Why C sucks" -- TOO MUCH control, too

much “hardcore stuff” to worry about

(e.g. “malloc”)
(“Go” and “Rust” are looking to take on c)

Python

● Arguably – the best “all around” language?
● Forced whitespace
● Usually "one way to do a thing"
● In the "middle" on just about all parameters.

Ruby
Designed for elegance, ease of use, but still powerful

● Highly OO

● Very easy to get started

● Very easy to read, yet still concise.

● Poignant's guide to ruby

● Arugably not quite as fast as slightly older languages

● "Why Ruby Sucks" – Turns out to not be fast enough, probably getting
eaten by Javascript?

Java

● First attempt at dethroning C, looks a lot like it
● Originally company driven, as a result got

popular/useful quickly
● interpreted, not compiled (Virtual Machine required)
● "Why Java Sucks" - slow, verbose, too many

options/fragmented

Simple v. Easy v. the third thing:

WE NEED CODE ON THE WEB LIKE RIGHT NOW.

NOW!!!!!!

NOWWWWW!!!!
(this explains most of the weirdness with – Flash, PHP, and
Javascript)

SERVER-SIDE

Code resides on server

Code is executed by server

Dynamic content is produced

(Ruby on Rails, Django, PHP*, Wt)
Note why PHP is a little weird. Instead of independent code, PHP
code is EMBEDDED IN HTML, but run by the server -- where you'd
usually expect it to be the other way around, i.e., have your code
PRODUCE html. This also might be why it's so popular.

PHP
● Designed to handle the web and HTML
● Features were added as needed, not from

ground up
● "Why PHP Sucks" Purists HATE IT; probably

the most duct-tapiest language of all

(still, facebook and wordpress)
(ASP is Microsoft's slightly different “PHP”)

CLIENT SIDE

CLIENT SIDE APPROACHES
Java/FlashJava/Flash

Download their little programs, and let them run in your browser

(yes, this can be as dangerous as it sounds)

Javascript

CODE is EMBEDDED in the html and RUN IN/BY YOUR BROWSER.

(yes, this is even more dangerous than the above. Also very useful. Get NoScript.) -

(greasemonkey is cool, though)

Silverlight- M$'s flash

HTML5 - will hopefully save us all. Reeimplementing all the good stuff in flash, openly.

Javascript

● Though looks like c, VERY DIFFERENT FROM
JAVA. Confusing, huh?

● CLIENT SIDE (mostly).

● JAVASCRIPT IS EATING THE WEB RIGHT
NOW. LOOKING VERY DOMINANT.

Specialized Languages

For Kids - Scratch

For special functionas – Sonic Pi, MySQL

For LOLS - LOLCODE, Shakespeare

For insanity - Brainf**k, Whitespace

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

