

LIS-3353

Linux/Unix Command Line Goodness

For comparison – Win 7?

OS X?

Choices choices choices
(for better or worse)

Linux has many different

“Desktop Environments”
(or Window Managers)

(which, to most, probably look like completely different operating systems)

KDE

Unity (Ubuntu)

Elementary

Fancy compiz fanciness

OpenElec (XBMC/Kodi)

Awesome

Richard Stallman:
Weird, picky guy who says crazy things

Richard Stallman:
Weird, picky guy who says crazy things

THAT ALWAYS END UP BEING TRUE IN THE LONG RUN

Richard Stallman:
Weird, picky guy who says crazy things,

e.g

They're going to go into your home
and burn your books!!

Richard Stallman:
Weird, picky guy who says crazy things,

e.g

They're going to go into your
COMPUTER

and burn your FILES!!

That's impossible, unless?

they kill the file manager

Hello iTunes! Hello Amazon!

Why Command Line?

Because you can very quickly say/relate
complex concepts in a concise way, by
combining a series of simple symbols.

You know, like talking. Or writing.

Command line is the act of literally talking to
the computer....unlike...

What's so bad about the mouse again?

Not bad, just simple: “Caveman interface,”
you can only point and grunt.

(Tablets and even “Minority Report” are cool
and fun...but why is Charades a game?)

Various names for the stuff we do today:

Command line: Blinky cursor area that's literally asking you, “okay,
now what?”

Terminal: App for command line (used to be the computer itself)

Shell: Any particular “type” of command-line environment.
Examples are Bash, Fish, Zsh, MS-Dos, etc.

Bash: “Bourne Again Shell; the specific Linux/Unix shell we will
use.

Scripting: Putting a bunch of shell commands in a file and running
it as a program.

Why isn't “scripting” a bigger thing?

Why is “scripting” NOT considered
“real programming?”

● Quick and dirty
● Performance can be slow (especially as

compared to compiled)
● Lacks “libraries” or “frameworks”
● Few tools/structures designed for reuse or

collaboration

“Real” Programming Languages
(C, Python, Ruby, Java etc.)

Bash/Shell scripting

For example...

sudo rm -rf /

● seriously, don't do this.

Users and Permissions
(they actually mean something here)

ROOT – Like “Administrator” or maybe “God”

users – humans
(..and others – fake “users” to get tasks done)

Some systems (eg Ubuntu) allow for Super Users

S.U.- do “this” = sudo

And now...this makes sense

Why Linux has no virus problem
Windows historically does not distinguish between:

files you're meant to read/watch/hear/edit, and
files you're meant to run.

A piece of paper that says “Go jump off a
bridge” is pretty harmless...unless....

P.S.

In this set of slides, I will not test you on
anything from here, forward…

Permissions
aka why original windows was amazingly stupid because multiple people

might want to sometimes use the same computer

Three major things you can do with files

READ (look at, view, listen to)

WRITE (and delete and edit)

EXECUTE (run as a program)

Three important “groups”

owner of the file

owner's group

everybody else

Permissions
Quick note on permissions for directories (kind of non-intuitive)

READ: Is able to read the directory listing

WRITE: Is able to change contents of the directory

(create new/delete existing files, or rename them)

EXECUTE: Is able to access/ go to the directory

Permissions
(that funky line when you do a ls -l)

0123456789

-rwxr--r--

dr-x------

Permissions
(also, how computers work)

● Octal Text Binary Meaning

0 --- 000 All types of access are denied

1 --x 001 Execute access is allowed only

2 -w- 010 Write access is allowed only

3 -wx 011 Write and execute access are allowed

4 r-- 100 Read access is allowed only

5 r-x 101 Read and execute access are allowed

6 rw- 110 Read and write access are allowed

7 rwx 111 Everything is allowed

Permissions

Thus – permission types like

644

oge

owner can read and write (4+2)

group can only read (4)

others can only read (4)

Practical Permission problems you are likely to encounter:

● If you're unable to view, execute, or delete/change a file, try this.

● If you write a little shell script (.sh), remember to set it executable.
(The only permission command I use on a regular basis is chmod
+x “file.sh”)

● FAT and NTFS filesystems (the ones Windows use) don't have
permissions, but Linux has to occasionally pretend they do, this
causes problems.

● When you're taking a website online, this is often a difficult issue.
(For a good reason; you don't want website visitors overwriting
your critical files!)

File Paths
File paths are HIERARCHICAL and DELIMITED by backslashes,
starting with root, at “/”, e.g.

/media/cdrom/mypaper.txt

signifies a file “mypaper.txt” in a folder called “cdrom”, and
THAT folder is in a folder called media – and “media” is in the
root directory.

SPECIAL FOLDERS:SPECIAL FOLDERS:

~ or ~/ signifies the user's home folder. i.e. if your username
is fsmith, and you are logged in: ~/ = /home/fsmith/

. (one period) refers to your current folder

..(two periods) refers to one folder up. Thus, if you're currently
in /home/fsmith then ../ would refer to /home.

The LINUX Filesystem
(EVERYTHING is a file!)

/bin, /sbin – Systemwide binaries

/boot – Boot Stuff

/dev - devices

/etc – (Some) helper files

/home/user – YOUR files & config (you can just back this up)

.files (dotfiles)

/lib – Libraries (kind of like dlls)

/lost+found – improper shutdown?

/opt – non-default/weird programs

/mnt, /media – generic “mount points”

/proc – the actual running processes whooa

/usr – User stuff (mostly binaries)

/tmp – temp files

/var – other spooling data, logs

Getting help

man (command)

info (might give you more info)

apropos (keyword to search)

help (pretty basic stuff)

but seriously, Google/Duckduckgo etc

Linux/Unix Commands (verbs)

Any action or program the computer can do

Commands often have ARGUMENTS, either:

OPTIONS (adverbs)

– One dash + a letter (ls -a)

– Two dashes + words (sort --reverse)

EXPRESSIONS (nouns)

– Text, numbers, files, streams, anything you want to
manipulate

File Manipulation

ls - list

cd – change directory

rm –remove (delete for good)

mv – move OR rename (they are literally the same thing, weird)

cp - copy

Viewing text and files

cat - “concatenate”

less - this is such a terribly bad joke I hate
even explaning it

...but what about editing?

Editing Files

nano/pico (text-based, “normal” keys)

vi/vim (hardcore choice 1 universal,modal)

emacs (hardcore choice 2)

When you turn on your computer

● 1) Electricity and Magic

● 2) BIOS/EFI/UEFI

● 3) Bootloader (Grub or windows)

● 4) Operating System

Multiple commands, one line

& - Run both simultaneously

&& - Run the first one, and then the second
ONLY IF the first “succeeds,” otherwise
stop.

; - Run the first one, then the second
regardless of what happens.

Even MORE command line.

One quick command I totally forgot:

echo

(puts argument through stdout)

Pipes and redirects

Default behavior:

read from “stdin”, write to “stdout”

> (over)write/replace a file

>> write to/append to file

< read from file

| pipe output from first command into 2nd

tee pipe AND write to stdout

BASH
BASH (Bourne Again) Shell - others are fish and zsh, etc

Lots of “tricks” are available here, eg

● Tab completion

● Up arrow key for history

● Ctrl-R to search history

and many MANY more

More BASH

Furthermore, you can modify this environment to fit your needs, via:

.bashrc

(stuff here will be run everytime you open a terminal)

A great example is the “alias” command. If a command doesn't exist
for what you want to do, just ,ake up your own!

alias modbash='gedit ~/.bashrc'

Linux/Unix Commands
An action or program that a computer can do

Find them with “apropos,” learn about them with “man”

(check these out http://www.oreillynet.com/linux/cmd/)

Commands can optionally have ARGUMENTS, in the form of:

OPTIONS

one dash + letter (ls -a)

two dashes + words (sort --reverse)

EXPRESSIONS

text; numbers; files; streams – things to be manipulated

http://www.oreillynet.com/linux/cmd/

Opening Files

IN TERMINAL

less

cat (stdout)

COMMAND/ARGUMENT STYLE

gnome-open file

vim textfile

firefox localfile.html

firefox http://slashdot.org

SORT

● - i = case INSENSITIVE
● - r = REVERSE
● - g = numbers
● - R = random

GREP (line matching)

grep OPTIONS PATTERN (FILE)
Can search over FILES or STDIN

Also, can search ONE FILE or MANY (check -d or -R)

useful flags:

-i (case insensitive)

-v (invert search/show NON-matches)

-l (just show matching FILES, not lines)

FIND (files)

Searches directory tree rooted at given filename (default
current)

Good if you also want to use parameters like “date”, “last
accessed”, “size” and so forth.

Often used with -name or -iname

Also, consider “locate” (database must be setup
beforehand

SED (stream editor)

Considered an entire language

Usually used with “s” for substitution

Delimiters are usually slashes but can be anything

REGULAR EXPRESSIONS

echo “Good day” | sed 's/day/night/'
http://www.grymoire.com/Unix/Sed.html

http://sed.sourceforge.net/sed1line.txt

http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt

AWK
awk <search pattern> {<program actions>}

Also a text-processor, good for flat-file databases

Also, an entire language

awk ' /apples/ { print $2 “ “ $1 } '

http://www.vectorsite.net/tsawk.html

http://www.pement.org/awk/awk1line.txt

http://www.vectorsite.net/tsawk.html
http://www.pement.org/awk/awk1line.txt

CLI v GUI?

● Command Line Interface
●

● Vs
●

● Graphical User Interface

…..why not both?

CLI, but GUI-ish

● Nano
● Mc (midnight commander)

From CLI to GUI

● Opening file on command line

firefox home.html

(Remember, closing the terminal will also
close the program)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

